相关性分析:指对两个或多个具有相关性的变量元素进行分析
相关系数最早是由统计学家卡尔 皮尔逊设计的统计指标,是研究变量之间线性相关承兑的值,一般用字母 r 表示。
这里是引用如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:
(1)、当相关系数为0时,X和Y两变量无关系。
(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。
(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。
相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
通常情况下通过以下取值范围判断变量的相关强度: 相关系数 0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0.0-0.2 极弱相关或无相关
Spearman相关系数适用于不符合正态分布或者总体分布类型未知的数据,Spearman用于描述两个变量之间关联的程度与方向。
待补充
Kendall等级相关系数是用于反应分类相关变量的相关指标,适用于两个变量均为有序分类的情况,对相关的有序变量进行非参数性相关检验。
待补充