ES搜索敏感词 es搜索推荐

   日期:2024-12-26    作者:ei1al 移动:http://mip.riyuangf.com/mobile/quote/52751.html


1. 概述
搜索一般都会要求具有“搜索推荐”或者叫“搜索补全”的功能,即在用户输入搜索的过程中,进行自动补全或者纠错。以此来提高搜索文档的匹配精准度,进而提升用户的搜索体验,这就是Suggest。

##四种Suggester
2. term suggester
term suggester正如其名,只基于tokenizer之后的单个term去匹配建议词,并不会考虑多个term之间的关系

Options:
  • text:用户搜索的文本
  • field:要从哪个字段选取推荐数据
  • analyzer:使用哪种分词器
  • size:每个建议返回的最大结果数
  • sort:如何按照提示词项排序,参数值只可以是以下两个枚举: score:分数>词频>词项本身 frequency:词频>分数>词项本身
  • suggest_mode:搜索推荐的推荐模式,参数值亦是枚举:
  • max_edits:可以具有最大偏移距离候选建议以便被认为是建议。只能是1到2之间的值。任何其他值都将导致引发错误的请求错误。默认为2
  • prefix_length:前缀匹配的时候,必须满足的最少字符
  • minwordlength:最少包含的单词数量
  • mindocfreq:最少的文档频率
  • maxtermfreq:最大的词频

3. phrase suggester
phrase suggester和term suggester相比,对建议的文本会参考上下文,也就是一个句子的其他token,不只是单纯的token距离匹配,它可以基于共生和频率选出更好的建议。

Options:

  • realworderror_likelihood: 此选项的默认值为 0.95。此选项告诉 Elasticsearch 索引中 5%
    的术语拼写错误。这意味着随着这个参数的值越来越低,Elasticsearch 会将越来越多存在于索引中的术语视为拼写错误,即使它们是正确的
  • max_errors:为了形成更正,最多被认为是拼写错误的术语的最大百分比。默认值为 1
  • confidence:默认值为 1.0,最大值也是。该值充当与建议分数相关的阈值。只有得分超过此值的建议才会显示。例如,置信度为 1.0
    只会返回得分高于输入短语的建议
  • collate:告诉 Elasticsearch
    根据指定的查询检查每个建议,以修剪索引中不存在匹配文档的建议。在这种情况下,它是一个匹配查询。由于此查询是模板查询,因此搜索查询是当前建议,位于查询中的参数下。可以在查询下的“params”对象中添加更多字段。同样,当参数“prune”设置为true时,我们将在响应中增加一个字段“collate_match”,指示建议结果中是否存在所有更正关键字的匹配
  • directgenerator:phrase suggester使用候选生成器生成给定文本中每个项可能的项的列表。单个候选生成器类似于为文本中的每个单独的调用term suggester。生成器的输出随后与建议候选项中的候选项结合打分。目前只支持一种候选生成器,即directgenerator。建议API接受密钥直接生成器下的生成器列表;列表中的每个生成器都按原始文本中的每个项调用。

4. completion suggester
自动补全,自动完成,支持三种查询【前缀查询(prefix)模糊查询(fuzzy)正则表达式查询(regex)】 ,主要针对的应用场景就是"Auto Completion"。 此场景下用户每输入一个字符的时候,就需要即时发送一次查询请求到后端查找匹配项,在用户输入速度较高的情况下对后端响应速度要求比较苛刻。因此实现上它和前面两个Suggester采用了不同的数据结构,索引并非通过倒排来完成,而是将analyze过的数据编码成FST和索引一起存放。对于一个open状态的索引,FST会被ES整个装载到内存里的,进行前缀查找速度极快。但是FST只能用于前缀查找,这也是Completion Suggester的局限所在。

  • completion:es的一种特有类型,专门为suggest提供,基于内存,性能很高。
  • prefix query:基于前缀查询的搜索提示,是最常用的一种搜索推荐查询。
  • prefix:客户端搜索词
  • field:建议词字段
  • size:需要返回的建议词数量(默认5)
  • skip_duplicates:是否过滤掉重复建议,默认false

fuzzy query

  • fuzziness:允许的偏移量,默认auto
  • transpositions:如果设置为true,则换位计为一次更改而不是两次更改,默认为true。
  • min_length:返回模糊建议之前的最小输入长度,默认 3
  • prefix_length:输入的最小长度(不检查模糊替代项)默认为 1
  • unicode_aware:如果为true,则所有度量(如模糊编辑距离,换位和长度)均以Unicode代码点而不是以字节为单位。这比原始字节略慢,因此默认情况下将其设置为false。
  • regex query:可以用正则表示前缀,不建议使用

5. context suggester
完成建议者会考虑索引中的所有文档,但是通常来说,我们在进行智能推荐的时候最好通过某些条件过滤,并且有可能会针对某些特性提升权重。

  • contexts:上下文对象,可以定义多个
  • name:context的名字,用于区分同一个索引中不同的context对象。需要在查询的时候指定当前name
  • type:context对象的类型,目前支持两种:category和geo,分别用于对suggest item分类和指定地理位置。
  • boost:权重值,用于提升排名
  • path:如果没有path,相当于在PUT数据的时候需要指定context.name字段,如果在Mapping中指定了path,在PUT数据的时候就不需要了,因为Mapping是一次性的,而PUT数据是频繁操作,这样就简化了代码。

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。


举报收藏 0评论 0
0相关评论
相关最新动态
推荐最新动态
点击排行
{
网站首页  |  关于我们  |  联系方式  |  使用协议  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号