【图像加密】基于matlab混沌算法图像加密解密【含Matlab源码 1218期】

   日期:2024-12-25    作者:joocp 移动:http://mip.riyuangf.com/mobile/quote/12461.html

⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版
②付费专栏Matlab图像处理(初级版

⛳️关注CSDN海神之光,更多资源等你来

0 引言
随着通讯技术的飞速发展, 越来越多的领域需要传送数字图像信号, 因此信息的传送安全问题显得越来越重要。通常应用于数字图像通信的两种保护技术为:数字水印技术和图像加密技术。前一种保护技术因不改变图像的可见性而不适合用于保密图像的传送。后一种技术通过加密操作, 改变图像的可见性, 使原来的图像成为不可辨别的, 而只能通过相应的解密算法得到原始图像。随着通讯技术的发展, 图像加密技术因其具有良好的保密性而得到越来越广泛的应用。
在加密算法中需要一个随机序列发生器。由于离散的混沌系统容易实现, 同时混沌系统对参数和初始条件极其敏感, 把其作为密钥, 则系统具有优良的密码特性, 同时它在二维相平面内的不规则性使其更适用于图像加密。
本文应用离散混沌动力系统, 针对图像数据的存储特点, 设计了一种图像加密算法。所有的密钥都由离散混沌映射产生, 因此算法没有因为增加密钥设置而影响加密/解密的效率和速度。由于利用了混沌映射, 增加了破译难度, 提高了安全性, 仿真结果表明该算法能够有效地实现对数字图像数的加密/解密。

1 混沌系统
混沌现象是一种有界的内在的随机过程, 具有时间遍历性, 这种过程既非周期性, 又不收敛任意相近的两点经过若干次混沌迭代之后, 都会呈现指数发散, 所以很难预测混沌系统的初值和参数。另外, 混沌轨道极其不规则, 系统输出类似于随机噪声, 这些特点均使混沌映射很适用于设计密码系统。

Lyapunov指数是判断系统处于混沌状态的重要判据。Lyapunov指数小于零时, 系统运动状态稳定, 对初始条件不敏感;Lyapunov指数大于零时, 系统状态不稳定, 且对初始条件敏感;Lyapunov指数为零则对应于一种临界状态。由于系统最大Lyapunov指数决定系统的主要演化趋势, 因此可以时间序列的最大Lyapunov指数是否大于零来判断系统是否处于混沌状态。

从密码学的观点看, 序列的线性复杂度曲线是表征序列不可预测性和随机性的一个非常有效的度量指标, 对于n位随机序列的线性复杂度期望约等于n/2, 则说明其随机性能良好。这里采用B-M综合算法, 假设混沌二值序列为标准的m序列, 计算得到该序列阶数最小的线性移位寄存器的阶数, 即为该混沌序列的线性复杂度。由图可知, 该混沌序列的随机性能良好, 可满足系统加密要求。
4 图像加密

基于上述的特点, 采用Pwlcm系统应用于图像加密算法。将待加密的图像数据转换为二进制数据, 与量化后的混沌二值序列进行逐位异或计算, 使混沌信号与加密信息信号相互缠绕, 掩盖信息的可视性, 以达到保密的目的。

解密过程与此一致, 解密方采用相同的初值及控制参数, 生成相同的混沌序列, 与接收的加密信号进行逐位异或, 将结果输出还原, 以得到原始信息信号。具体加密过程如图4所示。

虽然Pwlcm系统具有它独特的优势, 但可以发现针对固定的控制参数p很容易被破解。如图2 (a) 所示, 对于 (2) 式迭代生成的混沌序列, 只要得到位于同一分段上的任意两个点对 (x (t) , x (t+1) ) 和 (x (t′) , x (t′+1) ) , 就可以确定参数p= (x (t′) -x (t) ) / (x (t′+1) -x (t+1) ) 。

整个加密过程中, 将初值的量化结果根据控制参数p的取值范围进行转化, 其结果作为p的值进行混沌过程的迭代。本文考虑到读取原始数据进行二进制转换过程中, 单个数值转为8位二进制字符, 图像矩阵最后变为n×8的矩阵, 因此将混沌序列每产生n个值进行一次p值改变。

由仿真结果 (b) 可知, 经加密后的图像信息已完全被打乱, 达到保密效果, 由 © 图可知, 正确的密钥经解密过程, 加密信息可被完全重构, 效果良好。由 (d) 图可知, 即使在初值相差10-17的情况之下, 也不能将加密数据重构出来, 说明其抗攻击性强。

clear all;
t0 = clock;%测试程序运行时间
im=imread(‘elain.jpg’);
im1=rgb2gray(im);%图像灰度化
im1=medfilt2(im1,[3 3]);%图像平滑处理
subplot(331);
figure(1);
imshow(im);%X为原始图像
title(‘原始图像’);
figure(2);
imshow(im1);
title(‘灰度化处理’);
im1=double(im1);
[ca1,ch1,cv1,cd1]=dwt2(im1,‘bior3.7’);%小波变换,获取图像的低频高频系数
figure(3);
subplot(231);
imshow(ca1,[]);
title(‘图像近似’);
subplot(232);
imshow(ch1);
title(‘低频水平分量’);
subplot(233);
imshow(cv1);
title(‘低频垂直分量’);
subplot(234);
imshow(cd1),;
title(‘高频分量’);
%以下为混沌加密算法
%以下为混沌加密算法
%以下为混沌加密算法
%以下为混沌加密算法
%以下为混沌加密算法
%以下为混沌加密算法
[M,N]=size(ca1);
e=hundungen555(M,N,0.1);
tt=0.1;
fca1=mod(ttca1+(1-tt)e,256);
subplot(235);
imshow(fca1,[]);
title(‘加密’);
im2=idwt2(ca1,ch1,cv1,cd1,‘bior3.7’);
figure(4);
imshow(uint8(im2),[]);
title(‘灰度图像小波重构’);
im3=idwt2(fca1,ch1,cv1,cd1,‘bior3.7’);
figure(5);
imshow(uint8(im3),[]);
title(‘加密图像小波重构’);
%以下为混沌解密算法
%以下为混沌解密算法
%以下为混沌解密算法
%以下为混沌解密算法
%以下为混沌解密算法
%以下为混沌解密算法
function e=hundungen(M,N,key0)
key0=3.925
key0
(1-key0);
end
key1=3.925;
for(i=1:M)
for(j=1:N)
key0=key1key0(1-key0);
a(i,j)=key0;
end
end
key3=0.2;
key2=3.925;
for(i=1:M)
for(j=1:N)
key3=key2key3(1-key3);
b(i,j)=key3;
end
end
key4=0.3;
key2=3.925;
for(i=1:M)
for(j=1:N)
key4=key2key4(1-key4);
c(i,j)=key4;
end
end
t=0.4;
w0=0.2;
w1=0.5;
w2=0.3;
w=(1-t)2*w0+2*t*(1-t)*w1+t2w2;
for(i=1:M)
for(j=1:N)
P(i,j)=(1-t)2*a(i,j)*w0+2*t*(1-t)*b(i,j)*w1+t2
c(i,j)*w2;
d(i,j)=P(i,j)/w;
d(i,j)=P(i,j);
end
end
x=d;

end

1 matlab版本
2014a

2 参考文献
[1]房宸舒.基于混沌算法的光学图像加密方法[J].信息与电脑(理论版). 2022,34(13)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长


特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。


举报收藏 0评论 0
0相关评论
相关最新动态
推荐最新动态
点击排行
{
网站首页  |  关于我们  |  联系方式  |  使用协议  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号