对于我们大部分的用户来说,从头到尾的学习、开发、训练LLM不太现实,一是学习成本很高,二是经济成本也很高。但是我们可以学习怎么使用LLM来提高我们的生产力,以及基于LLM来开发我们自己的应用。在学习中我们可以使用示例中的代码,在kimi、文心一言等国内大模型的页面上进行手动输入提示词进行验证。只要我们找到了技巧,就可以运用到我们的生活工作中,来提高我们的生产效率。
在开发大语言模型应用时,很难通过第一次尝试就得到完美适用的 Prompt。但关键是要有一个良好的迭代优化过程,以不断改进 Prompt。相比训练机器学习模型,Prompt 的一次成功率可能更高,但仍需要通过多次迭代找到最适合应用的形式。
本章以产品说明书生成营销文案为例,展示 Prompt 迭代优化的思路。这与吴恩达在机器学习课程中演示的机器学习模型开发流程相似:有了想法后,编写代码、获取数据、训练模型、查看结果。通过分析错误找出适用领域,调整方案后再次训练。Prompt 开发也采用类似循环迭代的方式,逐步逼近最优。具体来说,有了任务想法后,可以先编写初版 Prompt,注意清晰明确并给模型充足思考时间。运行后检查结果,如果不理想,则分析 Prompt 不够清楚或思考时间不够等原因,做出改进,再次运行。如此循环多次,终将找到适合应用的 Prompt。
图 1.3 Prompt 迭代优化流程
总之,很难有适用于世间万物的所谓“最佳 Prompt ”,开发高效 Prompt 的关键在于找到一个好的迭代优化过程,而非一开始就要求完美。通过快速试错迭代,可有效确定符合特定应用的最佳 Prompt 形式。
1.1 初始提示
1.2 提示优化 1: 解决生成文本太长
它似乎很好地完成了要求,即从技术说明书开始编写产品描述,介绍了一个精致的中世纪风格办公椅。但是当我看到这个生成的内容时,我会觉得它太长了。
在看到语言模型根据产品说明生成的第一个版本营销文案后,我们注意到文本长度过长,不太适合用作简明的电商广告语。所以这时候就需要对 Prompt 进行优化改进。具体来说,第一版结果满足了从技术说明转换为营销文案的要求,描写了中世纪风格办公椅的细节。但是过于冗长的文本不太适合电商场景。这时我们就可以在 Prompt 中添加长度限制,要求生成更简洁的文案。
提取回答并根据空格拆分,中文答案为97个字,较好地完成了设计要求。
当在 Prompt 中设置长度限制要求时,语言模型生成的输出长度不总能精确符合要求,但基本能控制在可接受的误差范围内。比如要求生成50词的文本,语言模型有时会生成60词左右的输出,但总体接近预定长度。
这是因为语言模型在计算和判断文本长度时依赖于分词器,而分词器在字符统计方面不具备完美精度。目前存在多种方法可以尝试控制语言模型生成输出的长度,比如指定语句数、词数、汉字数等。
虽然语言模型对长度约束的遵循不是百分之百精确,但通过迭代测试可以找到最佳的长度提示表达式,使生成文本基本符合长度要求。这需要开发者对语言模型的长度判断机制有一定理解,并且愿意进行多次试验来确定最靠谱的长度设置方法。
1.3 提示优化2: 处理抓错文本细节
在迭代优化 Prompt 的过程中,我们还需要注意语言模型生成文本的细节是否符合预期。
比如在这个案例中,进一步分析会发现,该椅子面向的其实是家具零售商,而不是终端消费者。所以生成的文案中过多强调风格、氛围等方面,而较少涉及产品技术细节,与目标受众的关注点不太吻合。这时候我们就可以继续调整 Prompt,明确要求语言模型生成面向家具零售商的描述,更多关注材质、工艺、结构等技术方面的表述。
通过迭代地分析结果,检查是否捕捉到正确的细节,我们可以逐步优化 Prompt,使语言模型生成的文本更加符合预期的样式和内容要求。细节的精准控制是语言生成任务中非常重要的一点。我们需要训练语言模型根据不同目标受众关注不同的方面,输出风格和内容上都适合的文本。
可见,通过修改 Prompt ,模型的关注点倾向了具体特征与技术细节。
我可能进一步想要在描述的结尾展示出产品 ID。因此,我可以进一步改进这个 Prompt ,要求在描述的结尾,展示出说明书中的7位产品 ID。
具体来说,第一版 Prompt 应该满足明确和给模型思考时间两个原则。在此基础上,一般的迭代流程是:首先尝试一个初版,分析结果,然后继续改进 Prompt,逐步逼近最优。许多成功的Prompt 都是通过这种多轮调整得出的。
后面我会展示一个更复杂的 Prompt 案例,让大家更深入地了解语言模型的强大能力。但在此之前,我想强调 Prompt 设计是一个循序渐进的过程。开发者需要做好多次尝试和错误的心理准备,通过不断调整和优化,才能找到最符合具体场景需求的 Prompt 形式。这需要智慧和毅力,但结果往往是值得的。
让我们继续探索提示工程的奥秘,开发出令人惊叹的大语言模型应用吧!
1.4 提示优化3: 添加表格描述
继续添加指引,要求提取产品尺寸信息并组织成表格,并指定表格的列、表名和格式;再将所有内容格式化为可以在网页使用的 HTML。
上述输出为 HTML 代码,我们可以使用 Python 的 IPython 库将 HTML 代码加载出来。
这款椅子是中世纪风格办公家具系列的一部分,适用于家庭或商业场所。它有多种外壳颜色和底座涂层可选,包括不锈钢、哑光黑色、光泽白色或铬。您可以选择带或不带扶手的椅子,以及软地板或硬地板滚轮选项。此外,您可以选择两种座椅泡沫密度:中等(1.8磅/立方英尺)或高(2.8磅/立方英尺)。
椅子的外壳底座滑动件是改性尼龙PA6/PA66涂层的铸铝,外壳厚度为10毫米。座椅采用HD36泡沫,底座是五个轮子的塑料涂层铝底座,可以进行气动椅子调节,方便升降。此外,椅子符合合同使用资格,是您理想的选择。
产品ID:SWC-100
本章重点讲解了在开发大语言模型应用时,采用迭代方式不断优化 Prompt 的过程。作为 Prompt 工程师,关键不是一开始就要求完美的 Prompt,而是掌握有效的 Prompt 开发流程。
具体来说,首先编写初版 Prompt,然后通过多轮调整逐步改进,直到生成了满意的结果。对于更复杂的应用,可以在多个样本上进行迭代训练,评估 Prompt 的平均表现。在应用较为成熟后,才需要采用在多个样本集上评估 Prompt 性能的方式来进行细致优化。因为这需要较高的计算资源。
总之,Prompt 工程师的核心是掌握 Prompt 的迭代开发和优化技巧,而非一开始就要求100%完美。通过不断调整试错,最终找到可靠适用的 Prompt 形式才是设计 Prompt 的正确方法。
读者可以在 Jupyter Notebook 上,对本章给出的示例进行实践,修改 Prompt 并观察不同输出,以深入理解 Prompt 迭代优化的过程。这会对进一步开发复杂语言模型应用提供很好的实践准备。
在繁忙的信息时代,小明是一名热心的开发者,面临着海量的文本信息处理的挑战。他需要通过研究无数的文献资料来为他的项目找到关键的信息,但是时间却远远不够。在他焦头烂额之际,他发现了大型语言模型(LLM)的文本摘要功能。
这个功能对小明来说如同灯塔一样,照亮了他处理信息海洋的道路。LLM 的强大能力在于它可以将复杂的文本信息简化,提炼出关键的观点,这对于他来说无疑是巨大的帮助。他不再需要花费大量的时间去阅读所有的文档,只需要用 LLM 将它们概括,就可以快速获取到他所需要的信息。
通过编程调用 AP I接口,小明成功实现了这个文本摘要的功能。他感叹道:“这简直就像一道魔法,将无尽的信息海洋变成了清晰的信息源泉。”小明的经历,展现了LLM文本摘要功能的巨大优势:节省时间,提高效率,以及精准获取信息。这就是我们本章要介绍的内容,让我们一起来探索如何利用编程和调用API接口,掌握这个强大的工具。
以商品评论的总结任务为例:对于电商平台来说,网站上往往存在着海量的商品评论,这些评论反映了所有客户的想法。如果我们拥有一个工具去概括这些海量、冗长的评论,便能够快速地浏览更多评论,洞悉客户的偏好,从而指导平台与商家提供更优质的服务。
接下来我们提供一段在线商品评价作为示例,可能来自于一个在线购物平台,例如亚马逊、淘宝、京东等。评价者为一款熊猫公仔进行了点评,评价内容包括商品的质量、大小、价格和物流速度等因素,以及他的女儿对该商品的喜爱程度。
1.1 限制输出文本长度
我们可以看到语言模型给了我们一个符合要求的结果。
注意:在上一节中我们提到了语言模型在计算和判断文本长度时依赖于分词器,而分词器在字符统计方面不具备完美精度。
1.2 设置关键角度侧重
在某些情况下,我们会针对不同的业务场景对文本的侧重会有所不同。例如,在商品评论文本中,物流部门可能更专注于运输的时效性,商家则更关注价格和商品质量,而平台则更看重整体的用户体验。
我们可以通过增强输入提示(Prompt),来强调我们对某一特定视角的重视。
1.2.1 侧重于快递服务
通过输出结果,我们可以看到,文本以“快递提前到货”开头,体现了对于快递效率的侧重。
1.2.2 侧重于价格与质量
通过输出的结果,我们可以看到,文本以“可爱的熊猫公仔,质量好但有点小,价格稍高”开头,体现了对于产品价格与质量的侧重。
1.3 关键信息提取
在1.2节中,虽然我们通过添加关键角度侧重的 Prompt ,确实让文本摘要更侧重于某一特定方面,然而,我们可以发现,在结果中也会保留一些其他信息,比如偏重价格与质量角度的概括中仍保留了“快递提前到货”的信息。如果我们只想要提取某一角度的信息,并过滤掉其他所有信息,则可以要求 LLM 进行 文本提取(Extract) 而非概括( Summarize )。
在实际的工作流中,我们往往要处理大量的评论文本,下面的示例将多条用户评价集合在一个列表中,并利用 循环和文本概括(Summarize)提示词,将评价概括至小于 20 个词以下,并按顺序打印。当然,在实际生产中,对于不同规模的评论文本,除了使用 循环以外,还可能需要考虑整合评论、分布式等方法提升运算效率。您可以搭建主控面板,来总结大量用户评论,以及方便您或他人快速浏览,还可以点击查看原评论。这样,您就能高效掌握顾客的所有想法。
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。