【车牌识别】基于matlab GUI BP神经网络车牌识别【含Matlab源码 669期】

   日期:2024-12-26    作者:alvinling88 移动:http://mip.riyuangf.com/mobile/quote/26951.html

⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版
②付费专栏Matlab图像处理(初级版

⛳️关注CSDN海神之光,更多资源等你来

function varargout = run(varargin)
% RUN MATLAB code for run.fig
% RUN, by itself, creates a new RUN or raises the existing
% singleton*.
%
% H = RUN returns the handle to a new RUN or the handle to
% the existing singleton*.
%
% RUN(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in RUN.M with the given input arguments.
%
% RUN(‘Property’,‘Value’,…) creates a new RUN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before run_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to run_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help run

% Last Modified by GUIDE v2.5 07-May-2016 15:41:22

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @run_OpeningFcn, …
‘gui_OutputFcn’, @run_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before run is made visible.
function run_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to run (see VARARGIN)

% Choose default command line output for run
handles.output = hObject;
handles.cd0 = cd;
handles.Color = 0;
handles.I = [];

axes(handles.axes1);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;

axes(handles.axes2);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;

axes(handles.axes3);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;

axes(handles.axes4);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;

axes(handles.axes5);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;

axes(handles.axes6);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;

axes(handles.axes8);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;

axes(handles.axes9);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;

axes(handles.axes12);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;
axes(handles.axes13);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;
axes(handles.axes14);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;
axes(handles.axes15);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;
axes(handles.axes16);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;
axes(handles.axes17);
set(gca,‘Xtick’,[]);
set(gca,‘Ytick’,[]);
box on;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes run wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = run_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%% 读图
[filename, cd1] = uigetfile( …
{‘.tif;.TIF;.JPG;.jpg;.bmp;.BMP;.jpeg;.JPEG;’,‘Image file’;…
.’, ‘All file (.)’},‘Pick an Image’);
axes(handles.axes1);
cla;
axes(handles.axes2);
cla;
axes(handles.axes3);
cla;
axes(handles.axes4);
cla;
if filename

 

end

handles.Color = 0;
cd(handles.cd0);
set(handles.text2,‘string’,‘’);
guidata(hObject, handles);

% — Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
image = handles.I;
gray = rgb2gray(image); % 图像灰度化
axes(handles.axes2);
imshow(gray);

% — Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
image = handles.I;
gray = rgb2gray(image);
new_gray = histeq(gray); % 直方图均衡 ,图像增强
axes(handles.axes3);
imshow(new_gray);

% — Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
image = handles.I;
gray = rgb2gray(image);
new_gray = histeq(gray); % 直方图均衡 ,图像增强
if size(new_gray,1)>1000
new_gray_1 = imresize(new_gray,0.1);
else
new_gray_1 =new_gray;
end

1 matlab版本
2014a

2 参考文献
[1]李洁,李登刚,曾文亮.基于BP神经网络的车牌识别方法研究[J].电子测试. 2022,(16)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长


特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。


举报收藏 0评论 0
0相关评论
相关最新动态
推荐最新动态
点击排行
{
网站首页  |  关于我们  |  联系方式  |  使用协议  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号