分享好友 最新动态首页 最新动态分类 切换频道
LLM大模型应用框架:LangChain与LlamaIndex的对比选择
2024-12-26 11:47

开发基于大型模型的应用时,选择合适的应用框架不仅能显著提高开发效率,还能增强应用的质量属性。这类似于在Windows上开发传统软件服务时从MFC过渡到.NET Framework,或在Linux服务器端使用Java语言时采用Spring及Spring Boot框架,以及在Web前端开发中选择VUE、React或Angular等多样的框架。面对基于大模型的应用开发,我们应如何挑选合适的应用框架呢?对于两种常见的大模型应用框架——Langchain和LlamaIndex,它们各自拥有独特的特性和适用场景,我们又该如何做出明智的选择呢

LLM大模型应用框架:LangChain与LlamaIndex的对比选择

1.关于LangChain

在《解读LangChain》一文中,老码农曾对LangChain 做个一些探索,这里重新回顾一下LangChain 的主要特点以及优势与局限。

1.1 主要特性

LangChain是一个工具,它支持大型语言模型与多种数据源的集成、定制化NLP管道的创建、模块化设计以及广泛的预训练模型使用。

数据连接

LangChain 实现了大型语言模型(LLM)与各类数据源的深度整合,包括

  • 数据库:使 LLM 能够连接至关系型数据库例如 MySQL、PostgreSQL)及 NoSQL 数据库(如 MongoDB,实现数据的动态获取与存储。
  • API:与 Web API 紧密结合,便于获取实时数据、进行外部服务交互,或基于模型输出执行特定操作。
  • 文件系统:允许访问并管理位于本地或云端文件存储系统中的数据,支持处理文档、日志及其他多种文件类型。
定制化管道

LangChain 赋予用户打造个性化 NLP 管道的能力,可根据具体应用场景进行定制开发,涵盖

  • 预处理步骤:实现标记化、词干分析、词素化等关键文本预处理任务。
  • 模型集成:轻松融合各种预训练或微调过的模型,以配合特定任务需求,如文本分类、摘要提取或翻译。
  • 后处理:对模型输出进行格式化、过滤,并无缝对接至下游应用程序,确保流程完整性与高效率。
模块化设计

LangChain 采用模块化架构设计,带来以下优势

  • 重用组件:借助现有模块处理常规任务,无需重复编写代码,简化流程。
  • 扩展功能:通过新增模块或扩展既有模块,轻松适应特定场景需求,增强功能灵活性。
  • 配置灵活:针对不同任务或数据源,可便捷配置及重新配置管道,实现高效定制。
预训练模型

LangChain 广泛支持多种预训练语言模型,涵盖

  • 主流模型如 BERT、GPT 和 T5:适用于文本生成、问答及文本分类等多种任务。
  • 领域特定模型:专为医疗、金融或法律等特定领域定制的预训练模型,满足行业特定需求。
  • 微调功能:能够在特定数据集上对模型进行微调,以提升在专业任务上的表现。
1.2 优势

LangChain 灵活适应多种 NLP 任务,便捷集成外部数据源,凭借模块化设计轻松扩展,且享有活跃社区的广泛支持。

  • 灵活性:LangChain 具备极高的适应性,能够应对从基础文本处理到复杂多步骤工作流程的各种 NLP 任务。
  • 集成性:它能够高效地与外部数据源及 API 集成,极其适合需要实时数据访问或与其它服务交互的应用场景。
  • 模块化:LangChain 的模块化架构使得定制化和扩展变得简单,方便开发者在现有组件基础上进行构建或根据需求创建新组件。
  • 社区支持:LangChain 拥有一个活跃而强大的社区,提供丰富的资源、教程以及论坛平台,促进问题解决与协作交流。
1.3 局限

LangChain 的学习曲线相对陡峭,对资源的需求较高,且依赖管理较为复杂,更适合有经验的用户。

  • 复杂性:LangChain 的功能丰富,配置选项多样,对初学者来说学习曲线可能较为陡峭,需要时间适应和掌握。
  • 资源密集型:训练和微调大型模型时,LangChain 需要大量的计算能力和内存资源,对硬件要求较高。
  • 依赖管理:在大型项目中,依赖关系和集成的管理可能会变得复杂,有时可能会出现冲突或兼容性问题,需细致处理。
1.4 使用场景

LangChain 极为适合开发需要整合多种数据源的定制化 NLP 应用,例如智能文档管理系统、自动化客服系统以及个性化推荐引擎。研究人员在试验不同 NLP 模型与技术时,可借助 LangChain 快速搭建原型并测试新思路,利用其支持预训练模型及自定义处理流程的特性。

对于聊天机器人和虚拟助手,LangChain 能够助力打造能够理解并回应用户询问、与后端系统无缝集成并提供个性化互动体验的高级对话代理。

2. 关于LlamaIndex

作为一个大模型应用框架,LlamaIndex‌专为基于RAG的大型语言模型‌应用设计。‌它的主要目的是帮助用户将私有或特定领域的数据结构化,‌并安全、‌可靠地集成到语言模型中,‌以提高文本生成的准确性。‌LlamaIndex名字中的"Llama"象征着智能和负载能力,‌而"Index"表示其在数据索引和检索方面的功能。‌

2.1 主要特点

本质上,LlamaIndex是一个高效的索引工具,专为大型数据集设计,支持反向索引和自定义索引策略。它具有分布式索引和水平可伸缩性,可与LLM集成以提供上下文感知搜索和动态数据获取。优化技术包括缓存和查询预处理,确保快速响应时间。

高效索引

LLlamaIndex 为大型数据集提供强大的索引工具,便于快速检索,包括

  • 反向索引:这些数据结构将单词或短语映射到数据集中的位置,以便快速搜索和查询。
  • 自定义索引策略:用户可根据数据类型或访问模式定义索引机制,如对结构化数据分层索引,非结构化文本使用平面索引。
可伸缩性

LlamaIndex 设计用于处理庞大数据集,提供

  • 分布式索引:在多个节点上分布索引任务,无瓶颈处理大量数据。
  • 水平可伸缩性:通过添加更多资源(如服务器)来扩展系统,应对不断增长的数据和查询,保持高性能。
与 LLM 的集成

LlamaIndex 能够与大型语言模型(LLM)集成,实现上下文数据检索功能

  • 上下文感知搜索:依托 LLM 的能力,LlamaIndex 能深入理解查询的语境,提供更相关且精确的搜索结果。
  • 动态数据获取:在与 LLM 的互动中,LlamaIndex 能动态地获取并呈现相关数据,确保响应具备丰富的信息量和上下文关联性。
查询优化

LlamaIndex 通过一系列优化技术确保查询的快速响应,包括

  • 缓存:将频繁访问的数据存储于内存中,显著减少常规查询的检索时间。
  • 查询预处理:在执行前对查询进行细致分析和重写,以提升处理性能,确保系统高效应对复杂查询。
2.2 优点

LlamaIndex高效处理大型数据集,保证快速搜索与检索。具备高度可伸缩性,适应数据增长而无需担忧性能下降。针对实时应用优化数据检索,支持低延迟场景如实时推荐和分析。

  • 性能: LlamaIndex 在管理和查询大型数据集方面非常高效。它的设计确保即使有大量的数据,搜索和检索操作仍然保持快速和反应迅速。
  • 可伸缩性: 它可以大规模地处理数据集,而不会造成显著的性能下降。这使得它适用于数据量不断增长的应用程序,例如企业搜索引擎和大型内容管理系统。
  • 优化: LlamaIndex 侧重于优化数据检索,这对于实时应用程序至关重要。系统快速获取和传递相关数据的能力使其非常适合低延迟的用例,例如实时推荐和实时分析。
2.3 缺点

LlamaIndex主要专注于数据索引和检索,不提供完整的NLP功能。与LangChain相比,它在构建自定义NLP应用方面的灵活性有限,且初始设置和配置较为复杂,需较多时间投资。

  • 功能域狭窄: LlamaIndex 主要关注数据索引和检索。它不是一个成熟的 NLP 框架,这意味着它不能为创建自定义 NLP 管道或执行大量自然语言处理任务提供同等水平的灵活性。
  • 灵活性有限: 与 LangChain 等框架相比,LlamaIndex 在构建自定义 NLP 管道和应用程序方面的灵活性较低。它是为特定任务设计的,可能不太适合索引和检索之外的各种需求。
  • 设置复杂: LlamaIndex 的初始设置和配置可能很复杂,特别是对于不熟悉数据索引概念和分布式系统的新用户。正确配置和优化系统可能需要大量的时间投资。
2.4 使用场景

LlamaIndex适用于数据密集型应用如搜索引擎和推荐系统,以及需要快速数据检索的实时系统如金融交易和网络安全监控。它支持与大型语言模型集成,提升智能搜索和交互式问答系统的性能。

数据密集型应用

LlamaIndex 非常适合那些需要迅速访问和处理大量数据的应用,比如

  • 搜索引擎:必须从庞大的索引库中快速且准确地拉取信息。
  • 推荐系统:依据用户的偏好和互动来动态地提供相关内容。
实时系统

LlamaIndex 极其适用于那些对快速数据检索有严苛要求的实时系统,例如

  • 金融交易平台:在其中,实时的数据访问与分析对于做出明智的交易决策至关重要。
  • 实时监控系统:如网络安全或运营监控等系统,为了能够及时作出反应,需要能够即刻访问数据。
对 LLM 的支持

LlamaIndex 能够与大型语言模型(LLM)结合使用,在推理过程中提供与上下文相关的数据,从而提升应用程序性能。具体应用如

  • 智能搜索:通过 LLM 使用索引数据来提供更准确、更贴合上下文的搜索结果。
  • 交互式问答系统:需要从大型数据集中提取相关信息,以有效地回答用户的查询。

开发人员和架构师可以通过理解这些特性、优点、缺点和使用场景,更好地评估 LlamaIndex 如何适应他们特定的生成式 AI 项目和数据密集型应用程序。

3. LangChain与LlamaIndex的对比选择

LlamaIndex 和 LangChain 对于希望构建自定义的基于 LLM 的应用程序的开发人员来说都是非常有用的框架。总结一下,LangChain 与 LlamaIndex 的对比如下

比较项LangChainLlamaIndex聚焦功能域定制化NLP流水线与大模型集成高效数据索引和信息提取灵活性高中扩展性中高集成性与外部数据源的高度集成主要是数据索引易用性学习曲线陡峭配置复杂,聚焦使用性能资源密集型可以高性能优化社区支持强成长中

当需要搭建复杂的 NLP 应用程序,并要求与多种数据源及自定义流水线配置进行灵活集成时,LangChain 是不二之选。对于依赖综合语言模型运用的项目,LangChain 显得尤为适合。

若主要关注高效的数据索引与检索,尤其是在处理大型数据集方面,LlamaIndex 则是理想选择。对于追求数据处理性能和可伸缩性至关重要的应用程序,LlamaIndex 高度契合。

LangChain 和 LlamaIndex 这两种框架各具特色,选择时应基于生成式 AI 应用程序的具体需求来决定, 同时,二者可以有机的结合,示例如下

4. LangChain与LlamaIndex的对比选择

LangChain 的主要重点是 LLM 的开发和部署,以及使用微调方法对 LLM 进行定制。然而,LlamaIndex 旨在提供端到端的机器学习工作流,以及数据管理和模型评估。在二者结合的时候,一般地,LlamaIndex 可以处理数据预处理和初始模型培训阶段,而 LangChain 可以促进 LLM 的微调、工具集成和部署。

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “?”“”等问题热议不断。

事实上

继等巨头公司发布AI产品后,很多中小企业也陆续进场超高年薪,挖掘AI大模型人才 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗

与其焦虑……

不如成为「」,毕竟AI时代谁先尝试,谁就能占得先机

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 分享出来:包括等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击👈

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 包括等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击👈

最新文章
2021高通骁龙处理器天梯排行榜
这里有着2021最新的高通骁龙处理器性能排行榜哦,让用户们可以更好的进行查看哦。用户们还可以在这里不断的查看各种处理器的详细信息并查看哦,让用户们可以更好的进行选择使用哦~高通骁龙处理器排行榜前十名第一名:骁龙8881、工艺:搭载
2025-2029年中国ChatGPT产业链投资规划及前景预测报告
ChatGPT是人工智能技术驱动的自然语言处理工具。ChatGPT产业上游主要包括芯片、数据中心等,中游主要是数据处理等,下游应用领域广泛,主要包括AI聊天机器人、AI金融、教育行业等。国外头部机构引领技术和商业应用,国内整体进度落后2-3年
AI发展的新机遇:如何用简单AI制作独特动漫头像?
12月11日,TCL创始人李东生在技术创新大会上强调,AI技术正深刻重塑全球经济格局,尤其是生成式AI在各行业中不断拓展应用。对于怀揣创意的你来说,这无疑是个绝佳时机!想要在社交平台上脱颖而出,动漫头像就是一种趣味而个性的选择。然而
2025应用统计学考研方向有哪些
作为一名即将步入社会的统计学研究生,我们都希望能够找到适合自己的就业方向,实现自身的职业发展目标。随着时代的变迁和科技的发展,2025年的统计学研究生就业方向也将有所不同。让我们一起来探讨一下2025年统计学研究生可能的就业方向吧
2023年郑州房地产企业销售业绩TOP20
2023年,郑州房地产市场以小阳春开局,但全年呈先扬后抑走势,下半年总体持续低位运行,购房者市场预期和置业动力偏弱。年度成交规模较2022年略有上升,市场分化明显,具有稳健房企背景、性价比高、改善属性强等特征的项目依旧保持良好的销
2024恋综图鉴:韩综卷题材炸裂,国综拼谁热搜多
文 | 文娱Talk,作者 | 辛米综艺市场的热度被《歌手2024》霸占,但爱磕cp的朋友们都知道,近期的恋综市场有多热闹。爱优腾三家陆续出牌对打,该说不说,恋综这一块还是有稳定受众的。先看这些恋综的综龄,各顶个的长。爱奇艺的《喜欢你我也
2024年新疆工程监理加盟成立分公司的规定+2024top5工程监理加盟人气排行榜
2024年新疆工程监理加盟成立分公司的规定+2024top5工程监理加盟人气排行榜
2019年5月中型轿车销量排行榜,你的爱车上榜了吗?
2019年5月中型轿车销量排行榜出炉了,大众迈腾低迷了数月之后,5月销量总算有些起色,销量达到15772辆,在B级轿车中排名第二,仅次于冠军雅阁。红旗H5本月销量再上一层楼,达到3362辆,超越了君越、阿特兹等合资品牌车型,表现十分给力,让
Cerse入门(一)Helloword解析与自动求导
Ceres是谷歌开发的广泛使用的最小二乘问题求解库。用户只需要按照一定的步骤定义待解的优化问题然后交给求解器计算。最小二乘问题一般格式如下:使用Ceres求解非线性优化问题,一共分为三个部分: 1、 第一部分:
600图库大全免费资料图2024|智能解答解释落实
  在当今信息技术迅速发展的年代,图库资源已成为人们学习和工作中不可或缺的一部分。随着智能化技术的进步和资源共享理念的普及,图库资源正在发生着深刻的变革。本文将深入探讨2024年600图库大全免费资料图的智能解答、解释落实情况,
相关文章
推荐文章
发表评论
0评