一个健壮的、安全的开放平台的架构设计,必然会针对对外开放的API接口进行速率限制,来保证整体系统的可用性,OpenAI对外的API也不例外,我们可以简单的从官方发现API使用量的限制。
【API Doc上的限制】
【个人账户里的速率限定以及当前所处的等级】
速率限制有五种衡量方式:
速率限制可能会根据先达到的条件而被触发。例如,你可能在向 ChatCompletions 端点发送了 20 次请求,但只有 100 个令牌,这将达到你的限制(如果你的 RPM 是 20),即使在这 20 次请求中没有发送 150,000 个令牌(如果你的 TPM 限制是 150,000)。
在实际应用中,RPM常常与API或服务的限制一起使用,以确保系统不会因为过度的请求而过载。例如,如果一个API的RPM限制为100,那么在任何给定的一分钟内,该API的请求总数不得超过100次。
需要注意的是,为了更精确地计算RPM,通常会使用实际的时钟时间,而不仅仅是从第一个请求到最后一个请求的时间间隔。这是为了确保即使请求不均匀分布,也能准确计算每分钟的请求速率。
当使用 OpenAI 的 GPT API 开发应用时,面对请求限制时,你可以考虑以下几个方法来提高系统的可用性和性能:
综合考虑这些因素,可以有效地提高系统的可用性,降低对 GPT API 的依赖,同时提供更好的用户体验。
在使用 OpenAI GPT API 或类似的服务时,通常用户会被分配一个或多个 API Key,每个 API Key 都有自己的请求限制。通过巧妙地管理这些 API Keys,你可以提高系统的性能和可用性。
以下是一些具体的步骤和建议: